
Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 1, 2023 

 

Using an LSTM network to monitor industrial reactors using electrical 

capacitance and impedance tomography – a hybrid approach 

 

Indexed by: 

  

Grzegorz Kłosowskia*, Tomasz Rymarczykb, Konrad Niderlab, Monika Kulisza,  

Łukasz Skowrona, Manuchehr Soleimanic 

 

 

a Lublin University of Technology, Department of Organization of Enterprise, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland 
b WSEI University, ul. Projektowa 4, 20-209 Lublin, Poland, Research and Development Center, Netrix S.A. 
c University of Bath, Department of Electronic & Electrical Engineering, Claverton Down, Bath, BA2 7AY, United Kingdom 

Highlights  Abstract  

▪ Combination of two types of electrical 

tomography (capacitance and impedance). 

▪ Verification of the advantage of hybrid 

tomography over homogeneous methods. 

▪ Application of the LSTM network to solve the 

inverse problem in electrical tomography. 

▪ The original approach to tomographic 

measurements as a data sequence for the LSTM 

network. 

 

 The article presents a new concept for monitoring industrial tank 

reactors. The presented concept allows for faster and more reliable 

monitoring of industrial processes, which increases their reliability and 

reduces operating costs. The innovative method is based on electrical 

tomography. At the same time, it is non-invasive and enables the imaging 

of phase changes inside tanks filled with liquid. In particular, the hybrid 

tomograph can detect gas bubbles and crystals formed during industrial 

processes. The main novelty of the described solution is the 

simultaneous use of two types of electrical tomography: impedance and 

capacitance. Another novelty is the use of the LSTM network to solve 

the tomographic inverse problem. It was made possible by taking the 

measurement vector as a data sequence. Research has shown that the 

proposed hybrid solution and the LSTM algorithm work better than 

separate systems based on impedance or capacitance tomography. 
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1. Introduction 

Monitoring of industrial processes is an important condition for 

the effective operation of machines and devices and affects the 

reliability of both systems and processes [37]. Tank reactors are 

used in industrial processes based on chemical reactions. During 

the operation of a tank reactor, various physical and chemical 

reactions occur inside it, which may be accompanied by phase 

changes [14]. Considering that processes of this type are 

dynamic and may have an uneven distribution in relation to the 

volume of the tank, modelling the processes in question is 

difficult. Proper operation of tank reactors and entire industrial 

installations is a key factor in obtaining appropriate quality 

parameters for the processes. Therefore, industrial processes 

must be precisely monitored. 

Industrial reactors are used in various branches of the 

economy. For example, in biogas plants, reactors are used to 

produce biogas from waste generated in wastewater treatment 

processes [1, 4, 9, 10]. Other areas of application of industrial 

reactors are: in the food industry for the production of yoghurt 

[2] or beer [39], in the paper industry [18], in the pharmaceutical 

industry [40], and in the chemical and petrochemical industry 

[16]. Tank reactors are vessels adapted to carry out controlled 

chemical reactions. Many such reactions take place inside 

industrial reactors. They can be controlled, for example, by 

changing the mixing frequency, changing the flow rate and 

speed, or controlling changes in pressure or temperature, as well 

as by selecting the appropriate substrate proportions. Process 

control is more difficult the more dynamic it is, which is why the 

response time of monitoring systems is of great importance. In 

addition to the parameters of the process, its course is also 

affected by the design of the industrial reactor: its diameter, 
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shape, and capacity, as well as the material of the wall.  

One of the groups of industrial reactors, taking into account 

the criterion of the aggregation state of the substrates, are 

heterogeneous reactors in which gas and liquid, gas and solid, 

and liquid and solid can coexist. We are dealing with the 

crystallisation process in the case of two-phase solid-liquid 

processes. Supervision—constant monitoring—is essential in 

industrial reactors where such processes occur. This type of 

monitoring aims to control the process of crystal precipitation. 

It is about obtaining answers to the questions of whether the 

process of phase transformations inside the reactor has been 

started, the places of crystal nucleation, and the current size of 

the crystals [43]. Thanks to this knowledge, actions can be taken 

to ensure the correct course of the process [26]. Therefore, the 

purpose of monitoring is to obtain precise information, in real-

time, on the emerging crystals or gas bubbles and thus ensure the 

reliability of both the implemented processes as well as 

production systems or entire industrial installations [35, 36]. The 

registration of actual parameters carried out during process 

monitoring enables the calculation of deviations from optimal 

values. Maintenance services or automatic systems receive  

a signal to apply corrective actions if the limit deviations are 

exceeded. Thanks to early information from the monitoring 

system, it is possible to maintain the appropriate quality of 

processes and final products. 

Monitoring industrial processes and systems using tank 

reactors is difficult. Due to the impossibility of non-invasive 

observation of the reactor interior, only basic physical 

parameters such as temperature, pressure, the angular velocity 

of the stirrer, or flow rate and velocity can be measured directly. 

However, these are point measurements. On their basis, it is 

possible to estimate, with some approximation, the condition of 

the reactor interior [12]. However, it is an indirect method with 

significant uncertainty in the inference, which is a disadvantage. 

A common drawback of monitoring methods based on 

traditional measurements is the need to use invasive sensors that 

can disturb process conditions. The general disadvantage of the 

classical methods is the point analysis, which concerns only 

selected fragments of the reactor interior. Tomography is the 

only known method that allows imaging entire sections of 

objects (2D) and spatial sections (3D). Based on the information 

provided by various sensors located throughout the analyzed 

industrial installation, SCADA systems are an example of  

a traditional approach to process monitoring [7, 23, 28].  

Among the conventional measurement techniques of 

parameters describing the state of the process described in the 

literature, the following can be distinguished: visual 

observations, liquid crystal thermography, colourimetric 

methods, the conductivity probe method, and the planar laser-

induced fluorescence method. The visual observation technique 

provides only a rough approximation of the measured 

parameters without quantification. Colourimetric methods rely 

on using two acid-base indicators and their color change 

properties due to chemical reactions, combined with 

colorimetric diagnostics of digital images extracted from video 

recorded during the process [6]. The method of liquid crystal 

thermography used, among others, by Lee and Vianneskis is 

based on the change of color of liquid crystals because of 

temperature change [20]. The disadvantages of both of these 

methods are that the monitored reactor must be transparent, 

which significantly hinders their use on an industrial scale. In 

the planar laser fluorescence technique, a fluorescent indicator 

is used as a tracer, and the change in the dependence of 

fluorescence intensity on temperature and dye concentration is 

used. In addition, this method requires a light source, i.e., a laser, 

which can illuminate the selected section. This method is non-

invasive but limited only to small tanks due to the high laser 

power required for larger volumes [6]. The last of the techniques 

discussed are the conductivity probe method, which is based on 

the difference in electrical resistance between the vapour and 

liquid phases. The method uses a probe or single-point sensor. 

Unfortunately, the probe can only measure local conductivity, 

and the calculated process parameters depend on the probe's 

position. Therefore, this technique does not apply at higher 

temperatures or industrial reactors [25]. 

Due to the limitations of invasive methods of process 

monitoring, more and more attempts are being made to use non-

invasive tomographic methods, i.e., electrical capacitance 

tomography (ECT) [24, 44, 45, 47], electrical impedance 

tomography (EIT) [10, 11, 22, 29, 41], magnetoacoustic 

tomography [48, 49], electrical resistance tomography [27, 38, 

46], ultrasonic tomography [19, 21, 31], or computed 

tomography using radiation X [3, 30]. 

Monitoring processes using tomography, unlike point 

methods, allows one to visualize the inside of industrial tank 

reactors without disturbing the process because the sensors are 

placed outside the tank. Tomography allows imaging of the 

boundaries between the various components inside the reactor in 

real-time, allowing the observation of changes' dynamics. In 

addition, tomography is a relatively cheap solution, which fact 

supports the legitimacy of its use. The presented study aimed to 

verify the effectiveness of hybrid tomography based on 

simultaneous EIT+ECT measurements. Therefore, the 

heterogeneous (heterogeneous, hybrid) tomographic method 

(EIT+ECT) was compared with the homogeneous 

(homogenous) methods, EIT and ECT. The presented 

tomographic system uses a neural network with long-term 

memory (LSTM). This approach is a novelty in tomography, and 

in combination with the hybrid nature of the EIT+ECT 

tomograph, it brings a new quality to the current state of 

knowledge. 

The structure of the work includes four chapters. The 

Materials and Methods chapter follows the introduction, which 

describes the test stand, consisting of a physical model of a tank 

reactor and a tomograph with electrodes. The algorithmic 

methods used are also discussed. The third part, entitled Results, 

presents various reconstruction images obtained based on 

simulation data and real measurements from the physical model 

of the reactor. Quantitative indicators assessing the quality of 

imaging are also presented. The last part, Discussion and 

Conclusions contains a short analysis and summary of the results 

obtained and assumptions from the research, as well as 

directions for future work. 

2. Materials and Methods 

This section contains a description of the models used in the 

research. The main object of the research was a physical model 

of a tank reactor to which EIT and ECT electrodes were 
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connected and a prototype of a hybrid tomograph enabling 

simultaneous EIT and ECT measurements. The digital model 

concerned an algorithm based on the LSTM network, which 

solved the inverse problem, and the spatial image of the tank, 

which was the distribution of the electrical conductivity of 

individual voxels that are components of the finite element 

mesh. 

2.1 Hardware 

The subject of the research was a physical model of a tank 

reactor. A hybrid tomograph prototype with electrodes was used 

for the research, adapted to process simultaneous or separate EIT 

and/or ECT measurements, which was entirely designed and 

manufactured in the Nertix SA laboratory. The hybrid 

tomograph combines two measurements: voltage measurement 

as part of EIT and capacitance measurement as part of ECT. The 

main limitation of the measurement speed was the period of the 

generated signal. Theoretically, a measurement time of 16 ms 

can be achieved. A 1 kHz signal is 1 ms per electrode multiplied 

by 16 electrodes. However, the measurement sampling period is 

longer and amounts to slightly less than 100 ms. This is because 

a dead period is used due to the need to stabilize the current after 

switching the excitation from one pair of electrodes to the other. 

The tomograph in question was built based on a set of Intel 

Altera Cyclone IV and Cyclone V FPGA chips, which allowed 

the use of parallel function blocks independent of each channel. 

The tomograph consists of the main board with a power supply 

and an excitation current controller, measurement cards, and  

a data controller with an image reconstruction algorithm. The 

motherboard serves as a connection for data buses and addresses 

buses for individual blocks. A power supply unit on the 

motherboard converts the 12 V DC voltage (from the battery) 

into the voltage required to operate individual function cards 

properly. In addition, the battery control and charging system 

have been integrated into the power supply unit. The main board 

acts as a generator of the excitation current signal and contains 

a system for verifying the signal's correctness and the electrode 

connection's correctness. Another element of the tomograph is 

the measurement card, which consists of four active electrodes 

containing blocks for forming the measured signal along with 

the gain control and detection of the zero intersection point—the 

voltage measured with the x-axis, which is necessary, among 

others, to determine the length of the wavelength and phase shift. 

Together with the Cyclone IV FPGA system and the A/D 

converter, the ADS8588 system performs the measurement 

function, including the signal filtering process, calculating the 

RMS value, and measuring the signal phase. Then, the initial 

data prepared in this way is transferred to the control unit via 

buses. Eight Cyclone IV systems were used in the CT scanner. 

The last element of the hybrid tomograph is the data controller, 

which has a built-in dual-core ARM Cortex-A9 processor and 

collects data from individual measurement cards via FPGA 

blocks (Field Programmable Gate Array) on an Intel Altera 

Cyclone V. It transfers configuration data to individual 

measurement blocks and supervises the correctness of the 

measurements. The function of the user interface, together with 

the reconstruction mechanisms, is performed by a processor 

operating under Linux. Measurement data is sent via Ethernet to 

the control unit, which is stored in mass memory. Real-time 

image reconstruction is also possible. 

 
Figure 1. Hybrid tomograph connected to a tank surrounded by 

EIT and ECT electrodes. 

The tank shown in Figure 1 has two rings of electrodes, upper 

and lower. Only the lower ring was used in the study, which 

consisted of 16 EIT electrodes and 16 ECT electrodes. Figure 2 

shows a close-up of the EIT and ECT electrodes. ECT electrodes 

are hermetically sealed, i.e., isolated from the liquid filling the 

tank. 

(a) 

 
(b) 

 
Figure 2. Tomographic electrodes: (a) - a single EIT electrode, 

(b) - a set of 16 ECT electrodes. 

All elements of the prototype tomographic system, including 

the tomograph, electrodes, and tank, were designed and 

manufactured in the laboratories of Netrix SA. 
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2.2 Simulation Environment 

Electrical tomography is inextricably linked with the need to 

solve the inverse problem. It is the basic difficulty and, at the 

same time, the challenge that accompanies this non-invasive, 

non-destructive technique of imaging the interiors of objects. 

The inverse problem is related to the deficit of input information 

(independent variables) compared to the output variables 

(observations), which results in the uncertainty of the obtained 

solution. Because we are attempting to deduce the cause from 

the effects, the inverse problem is synonymous with the ill-posed 

problem. The presented research is about identifying the internal 

structure of the tested object (a pipeline, tank, or reactor) based 

on voltage and/or capacitance measurements from electrodes 

placed outside and around its walls. An easier and 

unambiguously solved forward problem (the forward problem) 

consists in calculating the voltages on the electrodes applied to 

the surface of the tested object based on known mathematical 

models that take into account the geometry and structure of the 

object and material parameters. In the case of EIT, a forward 

problem can be represented as a potential distribution calculated 

by the Laplace partial differential equation using relation (1) 

[32] 

∇ ∙ (𝜎∇𝑢) = 0 (1) 

where 𝜎 = 𝜎(𝑆) is spatial conductivity, 𝑆 = (𝑥1, 𝑥2, 𝑥3) is a 

vector of spatial coordinates, and ∇𝑢 is a potential function. The 

forward problem is to solve the potential function ∇𝑢 using the 

known conductivity 𝜎(𝑆) while accounting for boundary 

conditions in homogeneous environments where 𝜎 = 𝑐𝑜𝑛𝑠𝑡. In 

heterogeneous environments, the generalized Laplace equation 

(2) applies 

∑
𝜕

𝜕𝑥𝑖

3

𝑖=1

(𝜎
𝜕𝑢

𝜕𝑥𝑖

) = 0     for      
𝜔𝜀

𝜎
≪ 1 (2) 

where 𝜔 is the frequency of the current and 𝜀 is the permittivity. 

Using the EIT hardware system, when voltages are applied, and 

the associated currents are detected at the L electrodes, we apply 

Dirichlet to Neumann (DtN) mapping. DtN mapping is used to 

determine boundary conditions using the formula 𝑢|𝜕Ψ ⟶

(𝜎
𝜕𝑢

𝜕𝒏
)|

𝜕Ψ
, where n is the outer normal vector. If ⋀𝜎 is the 

Dirichlet to Neumann transformation operator, then the EIT 

inverse problem is to find the parameter 𝜎 from ⋀𝜎. A forward 

problem in electrical capacitance tomography (ECT) is 

described by the Poisson equation (3) 

 

∇. (𝜀(𝑥1, 𝑥2, 𝑥3)∇𝜑(𝑥1, 𝑥2, 𝑥3)) = −𝜌(𝑥1, 𝑥2, 𝑥3) (3) 

where 𝜀(𝑥1, 𝑥2, 𝑥3) represents the permittivity distribution in 

the tested section, 𝜑(𝑥1, 𝑥2, 𝑥3) – the electric potential 

distribution, and 𝜌(𝑥1, 𝑥2, 𝑥3) represents the electric charge 

distribution [8]. Formula (3) defines the relationship between the 

capacitance measurements and the permittivity distribution. The 

free charges of the reconstructed fragment are zero in ECT. 

When 𝜌(𝑥1, 𝑥2, 𝑥3) = 0, relation (3) is converted to the Laplace 

equation, which should be used in boundary conditions.  

A forward problem in ECT can be efficiently solved using the 

finite element method (FEM). FEM is a numerical method that 

calculates the values of basic functions for individual elements 

of the FEM mesh. After determining the charges on the receiving 

electrode, the capacitance can be determined from Gauss's law 

according to equation (4) 

C𝑖,𝑗 =
𝑄

𝑉
=

1

𝛥𝑉𝑖,𝑗Γ𝑗

∮ 𝜀(𝑥1, 𝑥2, 𝑥3)∇𝜑(𝑥1, 𝑥2, 𝑥3)𝑑Γ𝑗  (4) 

where 𝑄 denotes the electric charges on the electrodes, 𝛥𝑉𝑖,𝑗 

denotes the difference in electric potential between the tested 

object's surface and the measuring electrodes, and Γ𝑗 is the 

surface of the j-th electrode. The task of the simulation 

environment is correctly mapping real conditions based on 

algorithmic models. It is particularly important when generating 

the simulation data necessary to train machine learning models. 

The Eidors toolbox, cooperating with the Matlab software [34], 

was used to develop the simulation environment. With its help, 

the FEM method was implemented, thanks to which meshes of 

tetrahedral finite elements (voxels) were made. Figure 3 shows 

how to generate the EIT measurements and observations to train 

the neural network. For this purpose, a forward problem was 

solved by transforming the conductivity distribution (Figure 3b) 

into a vector of 96 voltage measurements (Figure 3c) measured 

between individual pairs of electrodes. A digital, virtual model 

of the tank was developed, describing the geometry and material 

characteristics of the tested object together with the electrodes 

surrounding it. The key element of the model is the spatial mesh 

of finite elements on which the tomographic image is created. 

The FEM model (Figure 3b) has a lower height than the tank 

shown in Figure 3a because only the lower electrode ring of the 

tank was used in the tests. 

 

 

 

 
Figure 3. The essence of the forward and inverse problem in the EIT: (a) - a physical model of the tank, (b) - a FEM model,  

(c) - measurement values. 
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Based on the FEM model, pattern images were generated by 

assigning appropriate conductivity or electric capacitance values 

to individual finite elements (voxels). In the tested case, a tank 

with an outer diameter of ø200 mm (Figure 3a) contains tap 

water, the conductivity of which oscillates around 500 μS/cm. 

Plastic tubes with a diameter of ø20 mm, filled with air, were 

immersed in the water. ECT measurements were generated 

similarly, while EIT+ECT measurements were obtained by 

combining two measurement vectors for the EIT and ECT 

methods. The method of combining EIT and ECT measurements 

in the algorithmic scheme of the tomographic system is shown 

in Figure 4. From left to right, the ECT and EIT measurement 

vectors, with 120 and 96 measurements, are combined into one 

vector with 216 measurements. These measurements are the 

inputs of the LSTM neural network, which outputs a vector of 

20,445 individual FEM voxel values. The last stage is 

transforming the output vector into a tomographic image. Figure 

4 shows how to solve the inverse tomography problem using 

hybrid measurements and the LSTM network. 

 

 
Figure 4. Diagram of a hybrid tomographic system for 3D spatial imaging.

2.3 LSTM Network Architecture 

Based on simulation data, three independent LSTM systems 

were trained for three types of tomographs: homogeneous EIT 

and ECT and hybrid EIT+ECT. For the three types of input data 

(measurements), EIT, ECT, and EIT+ECT, identical 

reconstructions (master images) were assigned. Scripts for 

generating simulation cases have been validated based on real 

measurements. Thirty thousand cases were used to train the 

LSTM network, from which 1,000 were extracted as a validation 

set. The network was trained using a popular optimization 

algorithm called ADAM (Adaptive Moment Estimation). 

ADAM performs well in tasks with a large training set and 

models with many parameters. By design, ADAM is an 

algorithm designed to train and optimize deep neural networks. 

Based on the mean and variance of the gradient, the algorithm 

calculates the learning rate values. These coefficients are then 

used to update the hyperparameters of the LSTM network.  

The validation set was used to stop the neural network's learning. 

A stop occurred when the RMSE error for the validation set did 

not decrease for 6 consecutive iterations. The entire training set 

was divided into mini-batches with a size of 500 observations. 

Thus, a single epoch consisted of 58 iterations (29000/500). The 

validation error was calculated after every 30 iterations 

performed on the training set. The learning rate was constant and 

equaled 𝛼 = 10−3. There are no strict recommendations 

regarding the design of neural network architecture, meaning it 

must be selected manually. The network's hyperparameters 

include, among others, the number and type of layers, the 

number of units hidden in the layers, transfer functions, learning 

rate, size of mini-batches of data, type of learning algorithm, and 

other parameters, which were selected empirically. The network 

structure for EIT+ECT hybrid inputs is shown in Table 1. 

 

 

 

Table 1. LSTM network architecture - heterogeneous case (EIT+ECT). 

Layer 

No. 

Layer description Number of 

activations 

Learnable – variable parameters Total number of 

learnable 

1 Sequence layer with 216 inputs 216 - 0 

2 LSTM layer with 5000 hidden units 5000 Input weights: 20000×216 

Recurrent Weights: 20000×5000 

Bias: 20000×1 

104340000 

3 Normalization of mini-batches 5000 Offset: 5000×1 

Scale factor: 5000×1 

10000 

4 1-D global max pooling layer 5000 - 0 

5 Fully connected layer with 20445 outputs 20445 Weights: 20445×5000 

Bias: 20445×1 

102245445 

6 Regression layer with mean squared error as 

a quality criterion 

20445 - 0 

The first layer on all models is the sequential input layer. For EIT, the input layer is a vector with 96 values. For ECT, there 
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are 120 inputs, and for hybrid EIT+ECT, it is a vector of 216 

mixed measurements. Next is the bi-directional LSTM layer, 

which learns long-term correlations between signal time steps or 

sequence data. The state of the LSTM layer consists of a cell 

state and a hidden state. The first one contains information 

obtained from previous time intervals, so each step adds or 

removes information about the cell's state. The hidden state 

contains the layer's output in a given time step t; therefore, this 

state is also called the output state. Gates controls changes in 

these states. The gate that controls the cell state update level is 

the entry gate (i), the gate that controls the cell state reset level 

is the forget gate (f), the gate that adds information to the cell 

state is the cell candidate (g), and the gate that controls the cell 

state level added to the hidden state is the output gate (o). Figure 

5 illustrates how the gates control LSTM layer state changes, 

interact with each other, update layer states, and provide 

additional cell state information. 

 
Figure 5. Data flow in a single LSTM sequential step [5]. 

Each gate can be characterized by input weights (W), 

recursive weights (R), and biases (b), as shown in the matrix 

below: 

𝑊 =

[
 
 
 
𝑊𝑖

𝑊𝑓

𝑊𝑔

𝑊𝑜]
 
 
 
, 𝑅 =

[
 
 
 
𝑅𝑖

𝑅𝑓

𝑅𝑔

𝑅𝑜]
 
 
 
, 𝑏 =

[
 
 
 
𝑏𝑖

𝑏𝑓

𝑏𝑔

𝑏𝑜]
 
 
 

, 

The state of the cell at a given time step t is denoted by 𝑐𝑡 =

𝑓𝑡  ⊙   𝑐𝑡−1 + 𝑖𝑡  ⊙   𝑔𝑡, where ⊙ is the Hadamard product 

representing vector multiplication. The hidden state is defined as 

ℎ𝑡 = 𝑜𝑡  ⊙  𝜎𝑐(𝑐𝑡), where the activation function of the state is 

𝜎𝑐. Therefore, each of the gates can be defined in a given time 

step t as follows: input gate 𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖), 

forgetting gate 𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓), candidate gate 

𝑔𝑡 = 𝜎𝑐(𝑊𝑔𝑥𝑡 + 𝑅𝑔ℎ𝑡−1 + 𝑏𝑔) and exit gate 𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 +

𝑅𝑜ℎ𝑡−1 + 𝑏𝑜). For each of the three networks (EIT, ECT, 

EIT+ECT), the LSTM layer contained 5,000 hidden units. 

The activation function to update the cell and the hidden state is 

the hyperbolic tangent (tanh) function, and the activation 

function to apply to gates is the sigmoid function 𝜎(𝑥) =
(1 + 𝑒−𝑥)−1The function to initialize the weights is an 

orthogonal matrix defined by the QR decomposition with Z = 

QR for a random matrix Z coming from the unit normal 

distribution. The function for initializing input weights for all 

models is a Glorot-type initializer, enabling effective weight 

value assignment. The problem of appropriate, random 

initialization of weights is important because, when training 

deep neural networks, a fading or rapidly increasing gradient is 

a big problem. In order to avoid this, the algorithm should 

choose the weights so that the variance of the outputs and inputs 

of a given layer is the same. In addition, the gradients before 

passing through a given layer and after the backpropagation 

procedure of gradients should have equal variance. In the 

described studies, the Glorot initialization algorithm initializes 

the weights by drawing them independently from  

a homogeneous distribution with a mean of zero [17]. The next 

layer is the mini-batch normalization layer, which normalizes 

the input data across all processed cases. The normalization 

layer transforms the xi elements of the input signal in such a way 

that it first calculates the mean µB and the variance σB
2. Then, 

normalized activations 𝑥�̂� are calculated as (5) 

𝑥�̂� =
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜀

 (5) 

where 𝜀 is a constant intended to improve numerical stability 

if the variance is very small. The mini-batch normalization 

algorithm takes into account the eventuality that the mean is zero 

and/or the variance is unitary. These kinds of cases are not 

optimal for operations that follow mini-batch normalization. In 

the next step, activations are scaled using transformations (6) 

𝑦𝑖 = 𝛾𝑥�̂� +  𝛽 (6) 

where 𝛽 – offset and 𝛾 – scaling factor are learnable and 

updated during the training of the neural network. The next layer 

is a 1-D global maximization pooling layer that downsizes the 

inputs, returning only the maximum values extracted from 

specific groups of voxels. The penultimate layer is the fully 

connected layer with 20,445 outputs, which multiplies the input 

data by the weight matrix and then adds the bias vector. The 

Glorot function was used to initialize the weights in this layer in 

all trained LSTM network models. The last one is the regression 

layer, whose main task is calculating the mean squared error 

value. For a single observation, the root mean square error 

(RMSE) is given by (7). 

𝑅𝑀𝑆𝐸 = √∑
(�̂�𝑖 − 𝑦𝑖)

2

𝑅

𝑅

𝑖=1

 (7) 

where R is the number of responses, �̂�𝑖 is the target score, and𝑦𝑖  

is the network prediction for the i-th response [42]. 

Figure 6 shows the course of the LSTM network learning 

process. The quality assessment criterion is RMSE. The shape 

of the graph, the lack of clear fluctuations, and the consistency 

of the RMSE errors for the validation and training sets indicate 

a lack of overfitting and give grounds to expect that the neural 

network has gained the ability to generalize. 
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Figure 6. The performance of the LSTM network learning process in relation to the RMSE. 

3. Experimental Results 

Figure 7 compares reconstructions obtained using the hybrid 

EIT+ECT method with tomograms obtained using 

homogeneous EIT and ECT methods. It is a comparison based 

on synthetically generated cases because only such cases have 

reference images that can be used to train neural networks and 

quantitatively verify the reconstructed images' quality. 

 
Figure 7. Comparison of the results obtained with the EIT and ECT homogeneous methods with the EIT+ECT heterogeneous method. 
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Five representative cases were selected for comparison. Each 

reconstruction is presented in two views - axonometric and 

upper. The first column contains reference images. In the 

following columns are reconstructions made with the EIT+ECT 

(hybrid) and homogeneous EIT and ECT methods. In this way, 

the effectiveness of the hybrid method can be assessed. It can be 

noted that cases with a small number of inclusions are 

reconstructed better than those with a larger number of 

inclusions. Analyzing cases #1(a-d), a single inclusion is well 

reconstructed even by homogeneous methods, and the 

differences concern only the background color. However, in the 

case of #2(g), the EIT method fails because the reconstruction 

does not show one of the tubes. Case #3(l) is worse than the 

others because it cannot distinguish inclusions that are close to 

each other. Case #4(p) omits the right inclusion, and #4(o) 

poorly demarcates adjacent inclusions. Similar problems occur 

on reconstructions #5(s-t). It is visible that the reconstructions 

obtained with the hybrid method (EIT+ECT) #1(b), #2(f), #3(j), 

#4(n), #5(r) are of better quality than the reconstructions 

obtained with homogeneous methods. 

Quantification was based on three popular quality metrics 

used to estimate image quality, requiring reference images. The 

first indicator is the mean square error (MSE), defined as (8) 

𝑀𝑆𝐸 =  ∑
(𝑡𝑖 − 𝑦𝑖)

2

𝑅

𝑅

𝑖=1

, (8) 

which is very similar to the RMSE described earlier in 

formula (7). The peak signal-to-noise ratio (PSNR) is 

determined by the formula (9) [13] 

𝑃𝑆𝑁𝑅 = 10 ∙ log10(𝑅
2/𝑀𝑆𝐸) (9) 

where R is the maximum fluctuation of the voxel value of the 

input image, which in this case is R = 1. The PSNR calculates 

the peak signal-to-noise ratio of the reconstruction image. The 

higher the PSNR value, the better the image quality. Another 

indicator used for the assessment is the structural similarity 

index (SSIM) [15]. A characteristic feature of SSIM is the 

combination of three features in one indicator: contrast, local 

image structure, and luminance. The term "structures" herein 

means patterns of voxel intensity that include immediately 

adjacent voxels. Structures are normalized for luminance and 

contrast. Since the human visual system is adapted to observe 

structural differences, the SSIM quality index is consistent with 

the subjective assessment of a human being, which is 

particularly desirable in the case of tomography. The 𝑆𝑆𝐼𝑀(�̂�, 𝑦) 

indicator is defined by the formula (10) 

𝑆𝑆𝐼𝑀 =
(2𝜇�̂�𝜇y + C1)(2𝜎�̂�𝑦 + C2)

(𝜇�̂�
2 + 𝜇y

2 + C1)(𝜎�̂�
2 + 𝜎y

2 + C2)
 (10) 

where 𝜇�̂� , 𝜇𝑦, 𝜎�̂� , 𝜎𝑦 𝑖 𝜎�̂�𝑦 are the local means, standard 

deviations, and cross-covariances for images �̂�, 𝑦; 𝐶1 =

(0.01 ∙ 𝐿)2 and 𝐶2 = (0.03 ∙ 𝐿)2; if the voxel values are in the 

range (0,1), then L=1 in this case. The last measure used in these 

studies is the image correlation coefficient (ICC), which is 

calculated according to the formula (11) [33] 

ICC =
∑ (𝑦𝑖 − �̅�)(�̂�𝑖 − �̅̂�)𝑛

𝑖=1

√∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1 ∑ (�̂�𝑖 − �̅̂�)

2𝑛
𝑖=1

 
(11) 

where �̅� is the distribution of average voxel values of the 

reference image, �̅̂� is the distribution of average voxel values of 

the reconstructed voxels. 

Table 2 presents the values of four indicators related to the 

three methods tested and five reconstructive cases. The 

quantitative results generated by the metrics are consistent with 

the subjective and qualitative assessments resulting from the 

image analysis in Figure 7. In all tested configurations of four 

indices, three tomographic methods and five reconstruction 

cases, the EIT+ECT hybrid method always performs better than 

the other two homogeneous methods. In order to finally validate 

the usefulness of the EIT+ECT hybrid tomographic system, 

equipped with an algorithm based on the LSTM network, whose 

task is to transform measurements into spatial (3D) images,  

a number of reconstructions were carried out using a real 

(physical) model. 

Table 2. Comparison of reconstruction quality indices. 

Indicator of reconstruction quality 
Reconstruction cases 

Average 
#1 #2 #3 #4 #5 

E
IT

 

MSE 0.1666 0.1355 0.1220 0.0944 0.1080 0.1253 

PSNR 7.7821 8.6781 9.1360 10.248 9.6655 9.1020 

SSIM 0.2744 0.2893 0.3042 0.3122 0.3016 0.2963 

ICC 0.3632 0.3438 0.3375 0.3553 0.4318 0.3663 

E
C

T
 

MSE 0.4374 0.4030 0.1084 0.1324 0.0981 0.2359 

PSNR 3.5905 3.9468 9.6466 8.7787 10.082 7.2090 

SSIM 0.2157 0.2227 0.2110 0.2217 0.2282 0.2198 

ICC 0.5661 0.6178 0.5410 0.5036 0.5746 0.5606 

E
IT

 +
 E

C
T

 

MSE 0.0065 0.0181 0.0293 0.0239 0.0358 0.0227 

PSNR 21.828 17.422 15.317 16.213 14.461 17.048 

SSIM 0.7151 0.6213 0.6233 0.6222 0.5843 0.6332 

ICC 0.8624 0.8565 0.8121 0.8051 0.8050 0.8282 

Is the MSE of the hybrid EIT+ECT 

algorithm the smallest? 
Yes Yes Yes Yes Yes Yes 

Is the PSNR of the hybrid EIT+ECT 

algorithm the largest? 
Yes Yes Yes Yes Yes Yes 

Is the SSIM of the EIT+ECT hybrid 

algorithm the largest? 
Yes Yes Yes Yes Yes Yes 

Is the ICC of the hybrid EIT+ECT algorithm 

the largest? 
Yes Yes Yes Yes Yes Yes 
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Figure 8 visualizes the averaged values of the indicators for 

easier comparison. In this context, Figure 8 corresponds to the 

last column of Table 2, entitled "Average." In the case of MSE, 

the area assigned to the EIT+ECT method is smaller than that of 

EIT and ECT. The areas of the remaining three indicators 

evaluating the hybrid method are, in turn, clearly larger than the 

analogous measures of homogeneous methods. The percentage 

proportions visible on the chart make it easier to see the size of 

these advantages. 

 
Figure 8. Average indicators of reconstruction quality.  

Figure 9 shows five cases of different geometric 

configurations of immersion of the tubes in the water inside the 

tank. The first column in Figure 8 contains five photos of the test 

object taken from above. They show the location of the plastic 

pipes relative to the bottom. In the next two columns, there are 

reconstructions corresponding to real cases in the top and 

axonometric views. Comparing Figures 7 and 8, one can see  

a decrease in the quality of reconstructions obtained from real 

measurements compared to reconstructions made based on 

simulation measurements. The lower quality of the real 

reconstructions is caused by the noise in the measurement data 

and slightly different input data characteristics than the data used 

in the LSTM network learning process. There is always some 

level of noise during measurements. For example, the data used 

to train the network had 2% Gaussian noise, but the noise of this 

kind in real conditions may have slightly different parameters, 

resulting in worse reconstructions. 

 

 

 

  
Figure 9. EIT+ECT imaging results in real conditions. 
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4. Discussion and Conclusions 

The research described in this study aimed to verify the 

effectiveness and legitimacy of using EIT+ECT hybrid 

tomography. Innovation also used an algorithmic method of 

transforming measurements into images based on LSTM 

networks. To achieve the aim of the research, three independent 

predictive models were trained, including two homogeneous 

(EIT and ECT) and one hybrid (EIT+ECT), whose 

heterogeneous nature results from the combination of both 

methods mentioned above into one measurement vector. 

Combining EIT and ECT measurements into one vector 

increases the number of LSTM network inputs. When treated 

separately, the EIT and ECT methods functioned based on the 

number of measurements, respectively, of 96 and 120, while the 

input vector for the hybrid method was 216 measurements. This 

fact alone demonstrated the potential advantage of 

heterogeneous methods over homogeneous ones. The advantage 

of the hybrid method was confirmed by reconstructions based 

on simulation test cases and images based on measurements 

collected from electrodes applied to the surface of the physical 

reactor model. In addition, the effectiveness of the EIT+ECT 

method was verified based on the analysis of four image quality 

indices: MSE, PSNR, SSIM, and ICC. All indicators confirmed 

the superiority of the heterogeneous method over the 

homogeneous method. In addition to the appropriate algorithm 

tailored to the characteristics of the measurement data and the 

training set, the high quality of reconstruction depends on the 

use of appropriate equipment, from the tomograph to the 

electrodes. A prototype EIT/ECT hybrid tomograph was used in 

the study. The ECT electrodes were isolated from the liquid 

filling the tank reactor. The entire tomographic system with 

electronics was designed and manufactured in the Netrix SA 

laboratory. Future research will be conducted in adding 

ultrasonic tomography to the electrical tomography 

measurements. Enriching the measurement vector with non-

electrical measurements should significantly expand the 

possibilities of using the new method in industrial tomography, 

as it will make the test object (e.g., an industrial reactor) 

independent of the current-voltage properties. 
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